

ISSN Print: 2617-4693 ISSN Online: 2617-4707 IJABR 2024; SP-8(3): 375-379 www.biochemjournal.com Received: 20-01-2024 Accepted: 26-02-2024

Ajit Verma

Department of Veterinary Gynaecology & Obstetrics, IIVER, Rohtak, Haryana, India

JB Phogat

Department of Veterinary Gynaecology & Obstetrics, COVS, LUVAS, Hisar, Haryana, India

Sweety Department of Veterinary Physiology and Biochemistry, IIVER, Haryana, India

Sonu Department of Veterinary Medicine, IIVER, Haryana, India

Hariom Department of Animal Husbandry, Panchkula, Haryana, India

SK Phulia

India

Department of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffalo, Hisar, Haryana, India

Anand Kumar Pandey Department of Veterinary Gynaecology & Obstetrics, COVS, LUVAS, Hisar, Haryana,

RK Sharma Department of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffalo, Hisar, Harvana, India

Sandeep Kumar Department of Veterinary Gynaecology & Obstetrics, COVS, LUVAS, Hisar, Haryana, India

Corresponding Author: Ajit Verma Department of Veterinary Gynaecology & Obstetrics, IIVER, Rohtak, Haryana, India

Effect of estrus on vaginal and vulvar temperature following induction of estrus during winter and summer in anestrus Murrah buffalo and heifer

Ajit Verma, JB Phogat, Sweety, Sonu, Hariom, SK Phulia, Anand Kumar Pandey, RK Sharma and Sandeep Kumar

DOI: https://doi.org/10.33545/26174693.2024.v8.i3Se.799

Abstract

Fixed-time artificial insemination method (FTAI) has been used in buffalo to improve reproductive efficiency and rate. Estrus intensity and duration vary significantly among individuals and are affected by many factor. Therefore, estrus identification technology plays an important role in reproduction management of dairy herds. Vaginal and vulvar temperature measurement are more reliable and realistic method to use for the purposes of regulating reproduction and managing production. Hence present study was designed to investigate the change in vaginal and vulvar temperature during estrus induction protocol on 193 buffaloes and buffalo heifers during summer and winter under farm and field conditions. Study concluded that average vaginal temperature on the day of estrus increased in both winter and summer seasons in both buffalo and buffalo heifers.

Keywords: Vaginal temperature, vulvar temperature, buffalo, heifer, farm, field

Introduction

Buffalo is hardy animal having better adaptability for harsh environmental conditions and important livestock resource for the rural economy due to the fundamental role played by them in many climatically disadvantaged agricultural systems and having good feed conversion efficiency with low maintenance requirements (Paul *et al.*, 2002; Gasparrini, 2013) ^[24, 11]. However, despite of these merits, buffaloes are blamed for slow reproduction, owing to long calving interval, delayed puberty, poor estrus expression and seasonality in breeding (El- Wishy, 2007) ^[9]. The breeding season of buffalo starts in rainy season, and winter is the most favourable period, while summer is most unfavourable time for buffalo breeding (Sule *et al.*, 2001) ^[33]. The low pregnancy rate of buffaloes has been a major issue in India.

To achieve efficient reproduction, the buffaloes should have an inter-calving interval of 12-13 months for which ovarian activity should commence between 30-45 days of calving and conceive within 90 days of parturition (Abdalla, 2003) [1]. Shy reproductive behavior of buffalo may be due to the lower circulating concentration of hypophyseal and gonadal hormones and suboptimal functioning of hypothalamo-hypophyseal (HPS) and gonadal axis (Madan et al., 1983)^[17]. Heat stress has a direct adverse effect on breeding efficiency of female buffaloes and reduces the intensity and duration of estrus (Raut and Kadu, 1988; Lopez et al., 2004 and Singh et al., 2013) ^[26, 16, 33], poor estrus detection (30–40%; Barkawi et al., 1993)^[2], poor expression of estrus signs (Perera, 2011)^[25], a variable duration of estrus length (4–64 h; Baruselli et al., 2001) [3] and the difficulty in predicting the exact time of ovulation, are responsible for the limited use of artificial insemination (AI) in this species. Fixed-time artificial insemination method (FTAI) has been used in buffalo to improve reproductive efficiency and rate (Baruselli et al., 2013)^[4]. Ancillary methods are studied in search of an enhanced efficiency of the FTAI in cattle, and markers can be used to observe which females were produced by the other animals through homosexual behaviour typical of estrous expression (Sá Filho et al., 2011)^[28]. In buffalo, homosexual behavior is not expressed, and it is necessary to develop practical methods to identify estrus (Singh et al., 2000; Hockey et al., 2010) [31, 13].

Estrus intensity and duration vary significantly among individuals and are affected by many factors (Reith and Hoy 2018) ^[27]. Therefore, estrus identification technology plays an important role in reproduction management of dairy herds (Miller et al. 2007; Fricke et al. 2014) ^[20, 10]. It was reported that estrus (Suthar et al. 2011) [34], pregnancy (Gil et al. 2001)^[12], parturition (Wright et al. 2014)^[37], and the postpartum period (Burfeind et al. 2014)^[5] in cows are all accompanied by changes in body temperature. Compared with surface temperature measurement, vaginal and vulvar temperature are strongly correlated with core body temperature (EI-Sheikh et al., 2013; Miura et al., 2017) [8, 21] and are not significantly affected by external factors. Vaginal and vulvar temperature measurement are more reliable and realistic method to use for the purposes of regulating reproduction and managing production (Holman et al., 2013) ^[14]. Studies also showed that the estrous detection based on temperature measurement was superior to using ultrasound and hormone detection (Sakatani et al., 2016; Miura et al., 2017) [30, 21]. Hence present study was done to investigate change in vaginal and vulvar temperature from anoestrous to estrus phase during estrus induction in buffaloes by using digital and infrared thermometer.

Materials and Methods

The present study was carried out on 193 animals including pluriparous Murrah buffaloes (n=141) and buffalo heifers (n=52) maintained at 1) Central Institute for Research on Buffalo, Hisar (n=88), and 2) in rural areas, nearby Hisar district (n=105) during summer (May to August) and winter (November to February). The selected animals had a history of anestrous without showing any proper signs of heat such as bellowing, micturition, restlessness, vaginal discharge for the past more than 60 days following calving in postparturient buffaloes, and after attaining the age of sexual maturity in heifers. Under field conditions, all animals were subjected to repeated rectal examination at 12 days interval for confirmation of anoestrous condition and to confirm absence of any cyclic structure on either of the ovary. In farm animals, additionally transrectal sonography was also done to confirm acyclicity without any ovarian structure before the start of estrus induction protocols in farm condition. All animals included in the field study were reared on stall-feeding in their respective villages, and milked and suckled twice a day. The stall feeding practices were as per the availability of seasonal green fodder and wheat straw, with concentrates as per recommended the production potential of individual animals. The study was conducted in two experiments as per parity of animal and which was further categorized into different groups:

Experiment 1: The study was conducted on 143 anoestrous healthy pluriparous buffalo's belonged (between 2nd and 5th parity) and categorized in different groups according to the days post-partum and location of buffalo as given below:

Group 1 (n= 16): Anoestrous buffaloes of 60 to 90 days post-partum reared under farm conditions during winter.

Group 2 (n= 17): Anoestrous buffaloes of 60 to 90 days post-partum reared under farm conditions during summer.

Group 3 (n= 17): Anoestrous buffaloes of>90 days postpartum reared under farm conditions during winter. **Group 4 (n= 17):** Anoestrous buffaloes of >90 days postpartum reared under farm conditions during summer.

Group 5 (n= 10): Anoestrous buffaloes of 60 to 90 days post-partum reared under field conditions during winter.

Group 6 (n= 23): Anoestrous buffaloes of 60 to 90 days post-partum reared under field conditions during summer.

Group 7 (**n**= **14**): Anoestrous buffaloes of >90 days postpartum reared under field conditions during winter.

Group 8 (n= 27): Anoestrous buffaloes of >90 days postpartum reared under field conditions during summer.

Experiment 2: The study was conducted under farm and field conditions involving 52 healthy anoestrous buffalo heifers who had attained age of sexual maturity and had not shown signs of estrus. The buffalo heifers were free from any infectious or anatomical reproductive problem and had normal genitalia. The criteria to confirm anoestrous was the same as followed for buffalo in experiment number 1. Their anoestrous condition was confirmed on the basis of history obtained from farmers and subsequently confirmed through rectal examination at 12 days interval. The study was conducted during summer (n=31) and winter (n=21) months to check the efficacy of estrus induction protocol described above in experiment 1. The buffalo heifers were divided in different group as mentioned below:

Group 9 (n= 11): Anestrous buffalo heifers reared under farm conditions during winter.

Group 10 (n= 10): Anestrous buffalo heifers reared under farm conditions during summer.

Group 11 (n= 10): Anestrous buffalo heifers reared under field conditions during winter.

Group 12 (n= 21): Anestrous buffalo heifers reared under field conditions during summer.

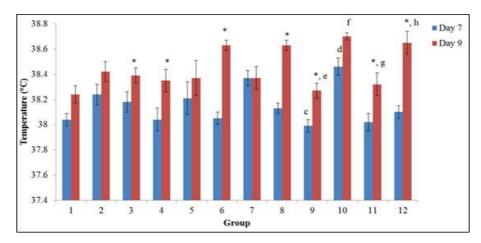
All the buffalo and buffalo heifers were subjected to measure the vaginal temperature and vulvar surface temperature on days 7 and 9 post-insertion of CIDR. The vaginal temperature was recorded by a clinical digital thermometer in degree Fahrenheit (°F), and thereafter the value recorded was converted into degree Celsius (°C). The vulvar surface temperature was recorded with the help of an infrared digital thermometer (Fisher ScientificTM TraceableTM Noncontact Infrared Thermometer) by keeping it 5 to 7 cm away from the desired vulvar surface site.

Results and Discussion

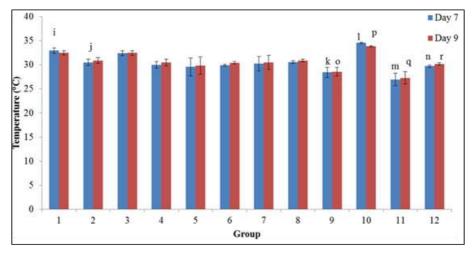
The average vaginal and vulvar surface temperature data for the buffalo and heifers on days 7 and 9 post-insertion of CIDR during winter and summer season are depicted in the table1, Figure 1 and 2, respectively. The measured vaginal temperature was significantly higher (p<0.05) on day 9 i.e. corresponding to the day of estrus than day 7 post-insertion of CIDR in both winter and summer season. Further analysis of data revealed that the average vaginal temperature was increased by 0.3 °C in both buffalo and heifer. However, no significant (p<0.05) vulvar temperature variations were recorded between days 7 and 9 post-insertion of CIDR in

https://www.biochemjournal.com

both seasons for buffalo and heifer (Table 1; Fig. 2). In summer, most of the buffalo group showed increased (p<0.05) vulvar temperature than winter season, however, trend of increased (p<0.05) vaginal temperature during former than later season was recorded for only few of buffalo groups.


It was observed that the body temperature of bovine changes during different stages of the estrus cycle (Suther et al., 2011; Wang et al., 2020) ^[34, 36] with greatest increase on the day of estrus (Wang et al., 2020) [36]. The present findings of higher average vaginal temperature by 0.3 °C on the day of oestrus are in agreement with earlier study in dairy cow (Wang et al., 2020) [36] and vulvar surface temperature in buffalo (De Ruediger et al., 2018) ^[6]. Additionally, increased body temperature on the day of estrus was reported by others (Dolecheck et al., 2015; Miura et al., 2017) ^[7, 21]. In the present study, the similar pattern of variation of the temperature on the day of estrus was not recorded for vulvar surface temperature. In contrast, study in cow (Osawa et al., 2004)^[23] and sow (Sykes et al., 2012)^[22] reported increased vulvar surface temperature in estrus compared to diestrus periods. The discrepancy in the present and earlier studies might be due to species difference. The current results are in agreement with the findings reported by Nabenishi et al. (2011) [22] in cattle, and suggested that environmental effects could not be avoided (Kendall and Webster, 2009; Miura et al., 2017) [15, 21]. Contrary, Sakatani et al. (2012) ^[29] and Sakatani et al. (2016) ^[30] reported no

variation in the vaginal temperature in Japanese Black cows in response to change in weather. Darker body coat and relatively presence of smaller number of sweat glands makes the buffalo more susceptible to weather change and heat stress (Marai et al., 2009; Marai and Haeeb, 2010)^{[19,} ^{18]}. Changes in the vulvar surface temperature in response to the weather variation may be explained by heat dissipation to the environment due to vasodilation and increased blood flow to the peripheral tissues of the body (Marai and Haeeb, 2010) [18]. In support of thiscurrent study also indicated that vaginal temperature was not much affected with variation of weather, however, vulvar temperature varied with change of weather to acclimatize the body under heat stress condition. Additionally, within summer season, heifer reared under farm condition exhibited higher vaginal and vulvar temperature than other category of buffalo group. Moreover, the buffalo belonging to 60-90 days post-partum and >90 days post- partum in the farm, and buffaloes of 60-90 days post-partum reared under field condition showed greater vulvar surface temperature than any other category of buffalo group. The exact reason behind the changes in temperature in above mentioned category is not clear, however, greater number of different category animal with smaller number of population size in each group would not be enough to suggest any valid reason. A study is warranted in larger population size to shed the light on this important issue related to variation in vaginal and vulvar surface in buffalo.


Table 1: Vulva and vaginal temperature (°C, Mean±SE) on days 7 and 9 post-insertion of CIDR in summer and winter season of different
group of buffaloes and heifers

Group	Season	Vaginal temperature		Vulvar temperature	
		Day 7	Day 9	Day 7	Day 9
1 (n=16)	Winter	38.04±0.05 ^a	38.24±0.07 ^a	32.94±0.56 ^{b, i}	32.49±0.43 ^b
2 (n=17)	Summer	38.24±0.08 ^A	38.42 ± 0.08^{A}	30.48±0.64 ^{A, j}	30.85±0.61 ^A
3 (n=17)	Winter	38.18±0.08 ^{ab}	38.39±0.06 ^{a*}	32.43±0.54 ^b	32.46±0.46 ^b
4 (n=17)	Summer	38.04±0.09 ^A	38.35±0.09*A	29.99±0.69 ^A	30.47±0.72 ^A
5 (n=10)	Winter	38.21±0.13 ^{ab}	38.37±0.14 ^a	29.57±1.84 ^{ab}	29.81±1.82 ^{ab}
6 (n=23)	Summer	38.05±0.05 ^A	38.63±0.04*A	29.92±0.19 ^A	30.43±0.22 ^A
7 (n=14)	Winter	38.37±0.06 ^b	38.37±0.09 ^a	30.21±1.48 ^{ab}	30.50±1.46 ^{ab}
8 (n=27)	Summer	38.13±0.04 ^A	38.63±0.04*A	30.53±0.29 ^A	30.88±0.28 ^A
9 (n=11)	Winter	37.99±0.05 ^{a, c}	38.27±0.06 ^{a*, e}	28.42±1.08 ^{a, k}	28.58±0.88 ^{a, o}
10 (n=10)	Summer	38.46±0.07 ^{d, B}	38.7±0.03 ^{f, A}	34.55±0.16 ^{B, 1}	33.84±0.14 ^{B, p}
11 (n=10)	Winter	38.02±0.07 ^a	38.32±0.09 ^{a*, g}	26.96±1.32 ^{a, m}	27.29±1.29 ^{a, q}
12 (n=21)	Summer	38.10±0.05 ^A	38.65±0.09*, h, A	29.71±0.27 ^{A, n}	30.17±0.23 ^{A, r}

A, B different superscript differ significantly within a column in winter season (p<0.05). ^{A, B} different superscript differ significantly within a column in summer season (p<0.05). ^{*} differ significantly vaginal temperature between day 7 and 9 in a row (p<0.05). ^c vs^{d, e} vs ^{f, g} vs ^{h, i}vs ^{j, k} vs ^{l, m} vs ^{n, o} vs ^{p, q} vs ^r differ significantly (p<0.05)

Fig 1: Vaginal temperature (°C, Mean \pm SE) on days 7 and 9 post-insertion of CIDR during summer and winter season of different group of buffaloes and buffalo heifers. 'differ significantly vaginal temperature between day 7 and 9 within a group (p<0.05). Q vs d' • VS f g VS h differ significantly (p<0.05)

Fig 2: Vulvar surface temperature (°C, Mean±SE) on days 7 and 9 post-insertion of CIDR during summer and winter season of different group of buffaloes and buffalo heifers. i is j, k vs 1, m vs n,VSP,9 VS 1. differ significantly (*p*<0.05).

Conclusion

The average vaginal temperature on the day of estrus increased in both winter and summer seasons in both buffalo and buffalo heifers.

References

- 1. Abdalla EB. Improving the reproductive performance of Egyptian buffalo cows by changing the management system. Anim Reprod Sci. 2003;75:1-8.
- 2. Barkawi AK, Bedeir LH, El-Wardani MA. Sexual behavior of Egyptian buffaloes in the post-partum period. Buff J. 1993;9:225-236.
- 3. Baruselli PS, Bernandes O, Barufi FB, Braga D, Araujo D, Tonathi H. Calving distribution throughout the year in buffalo raised all over Brazil. In: Proceedings of the 6th World Buffalo Congress. Book of the Congress, 2001:234-240.
- 4. Baruselli PS, Soares JG, Gimenes LU, Monteiro BM, Olazarri MJ, Carvalho AT. Control of buffalo follicular dynamics for artificial insemination superovulation and *in vitro* embryo production. Buff Bull. 2013;32:160-176.
- 5. Burfeind O, Suthar VS, Voigtsberger R, Bonk S, Heuwieser W. Body temperature in early postpartum dairy cows. Theriogenology. 2014;82:121-131.
- 6. De Ruediger FR, Yamada PH, Barbosa LGB, Chacur MGM, Ferreira JCP, de Carvalho NAT. Effect of estrous cycle phase on vulvar, orbital area and muzzle surface temperatures as determined using digital infrared thermography in buffalo. Anim Reprod Sci. 2018;197:154-161.
- Dolecheck KA, Silvia WJ, Heersche Jr G, Chang YM, Ray DL, Stone AE *et al.* Behavioral and physiological changes around estrus events identified using multiple automated monitoring technologies. J Dairy Sci. 2015;98(12):8723-8731.
- 8. EI-Sheikh Ali H, Kitahara G, Tamura Y, Kobayashi I, Hemmi K, Torisu S, *et al.* Presence of a temperature gradient among genital tract portions and the thermal changes within these portions over the estrous cycle in beef cows. J Reprod Dev. 2013;59:59-65.
- 9. El-Wishy AB. The postpartum buffalo II. Acyclicity and anestrus. Anim Reprod Sci. 2007;97:216-36.
- 10. Fricke PM, Carvalho PD, Giordano JO, Valenza A, Lopes G Jr, Amundson MC. Expression and detection

of estrus in dairy cows: the role of new technologies. Animal. 2014;8:134-143.

- 11. Gasparrini B. *In vitro* embryo production in buffalo: Yesterday, today and tomorrow. Invited Lecture in the 10th World Buffalo Congress; c2013.
- 12. Gil Z, Kural J, Szarek J, Wierzchoś E. Increase in milk and body temperature of cows as a sign of embryo entry into the uterus. Theriogenology. 2001;56:685-697.
- 13. Hockey CD, Morton JM, Norman ST, Mcgowan MR. Evaluation of a neck-mounted 2-hourly activity meter system for detecting cows about to ovulate in two paddock-based Australian dairy herds. Reprod Domest Anim. 2010;45:107-117.
- 14. Holman A, Thompson J, Routly JE, Cameron J, Jones DN, Grove-White D *et al.* Comparison of oestrus detection methods in dairy cattle. Vet Rec. 2013;169:47.
- 15. Kendall PE, Webster JR. Season and physiological status affects the circadian body temperature rhythm of dairy cows. Livest Sci. 2009;125(2-3):155-160.
- Lopez H, Satter LD, Wiltbank MC. Relation between level of milk production and estrus behavior of lactating dairy cow. Anim Reprod Sci. 2004;81:209-223.
- Madan ML, Naqvi SMK, Triu CV, Suri AK, Prakash BS. Plasma estradiol17-α progesterone and cortisol among anestrus rural animals. In: Symposium on Animal Reproduction in India. Society for Study of Animal Reproduction, HAU, Hissar, India. 1983.
- Marai IFM, Haeeb AAM. Buffalo's biological functions as affected by heat stress-A review. Livest Sci. 2010;127(2-3):89-109.
- 19. Marai I, Daader A, Soliman A, El-Menshawy S. Nongenetic factors affecting growth and reproduction traits of buffaloes under dry management housing (in subtropical environment) in Egypt. Livestock Res Rural Develop. 2009;4:6.
- 20. Miller RH, Norman HD, Kuhn MT, Clay JS, Hutchison JL. Voluntary waiting period and adoption of synchronized breeding in dairy herd improvement herds. J Dairy Sci. 2007;90:1594-1606.
- 21. Miura R, Yoshioka K, Miyamoto T, Nogami H, Okada H, Itoh T. Estrous detection by monitoring ventral tail base surface temperature using a wearable wireless sensor in cattle. Anim Reprod Sci. 2017;180:50-57.
- 22. Nabenishi H, Ohta H, Nishimoto T, Morita T, Ashizawa K, Tsuzuki Y. Effect of the temperature-

humidity index on body temperature and conception rate of lactating dairy cows in southwestern Japan. J Reprod Dev. 2011;1104050364-1104050364.

- 23. Osawa T, Tanaka M, Morimatsu M, Hashizume K, Syuto B. Use of Infrared Thermography to Detect the Change in the Body Surface Temperature with Estrus in the Cow. 2004 Proceedings from the 2004 SFT/ACT Annual Conference & Symposium, August 4-7, Lexington, Kentucky; c2004.
- Paul SS, Mandal AB, Pathak NN. Feeding standards for lactating riverine buffaloes in tropical conditions. J Dairy Res. 2002;69:173-180.
- 25. Perera BMAO. Reproductive cycles of buffalo. Anim Reprod Sci. 2011;124:194-199.
- Raut NV, Kadu MS. Observations on ovulation and its association with fertility in Berari (Nagpuri) buffaloes. In: First International Congress on Animal Reproduction and Artificial Insemination, Book of the Congress. 1988;3:542.
- 27. Reith S, Hoy S. Review: Behavioral signs of estrus and the potential of fully automated systems for detection of estrus in dairy cattle. Animal. 2018;12:398-407.
- Sá-Filho OG, Dias CC, Lamb GC, Vasconcelos JL. Progesterone based estrous synchronization protocols in non-suckled and suckled primiparous Bos indicus beef cows. Anim Reprod Sci. 2010;119:9-16.
- 29. Sakatani M, Balboula AZ, Yamanaka K, Takahashi M. Effect of summer heat environment on body temperature, estrous cycles and blood antioxidant levels in Japanese Black cow. Anim Sci J. 2012;83(5):394-402.
- Sakatani M, Takahashi M, Takenouchi N. The efficiency of vaginal temperature measurement for detection of estrus in Japanese Black cows. J Reprod Dev. 2016;2015-095.
- 31. Singh J, Nanda AS, Adams GP. The reproductive pattern and efficiency of female buffaloes. Anim Reprod Sci. 2000;60-61:593-604.
- 32. Singh M, Chaudhari BK, Singh JK, Singh AK, Maurya PK. Effects of thermal load on buffalo reproductive performance during summer season. J Biol Sci. 2013;1(1):1-8.
- 33. Sule SR, Taparia AL, Jain LS, Tailor SP. Reproductive status of Surti buffaloes maintained under sub-humid conditions of Rajasthan. Indian Vet J. 2001;78:1049-1051.
- Suthar VS, Burfeind O, Patel JS, Dhami AJ, Heuwieser W. Body temperature around induced estrus in dairy cows. J Dairy Sci. 2011;94:2368-2373.
- 35. Sykes DJ, Couvillion JS, Cromiak A, Bowers S, Schenck E, Crenshaw M. The use of digital infrared thermal imaging to detect estrus in gilts. Theriogenology. 2012;78(1):147-152.
- Wang S, Zhang H, Kou H, Chen X, Lu Y, Li L. Early pregnancy diagnoses based on physiological indexes of dairy cattle: a review. Trop Anim Health Prod. 2020:1-8.
- 37. Wright EC, Boehmer BH, Cooper-Prado MJ, Bailey CL, Wettemann RP. Effect of elevated ambient temperature at parturition on duration of gestation, ruminal temperature, and endocrine function of fall-calving beef cows. J Anim Sci. 2014;92:4449-4456.