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Abstract 

This review delves into the groundbreaking CRISPR/Cas9 technology, showcasing its diverse 

applications in genome editing, gene therapy, drug discovery, disease modeling, and combatting 

antibiotic resistance. From addressing genetic disorders and infectious diseases to enhancing food 

security, CRISPR/Cas9 offers multifaceted solutions across fields like medicine and agriculture. In 

gene therapy, it shows potential in treating diseases such as sickle cell disease and cystic fibrosis 

through targeted gene modifications in clinical trials. In drug discovery, CRISPR/Cas9 expedites the 

identification of therapeutic targets and aids in developing novel treatments by precise genetic 

modifications in cells and animal models. Additionally, it presents innovative strategies for managing 

infectious diseases by combating antibiotic resistance and viral infections like HIV. In agriculture, 

CRISPR/Cas9 enables precise genome editing to enhance traits like disease resistance and yield, 

fostering improved productivity and sustainability. Despite these challenges, CRISPR/Cas9 emerges as 

a versatile tool with immense potential in addressing diverse health and agricultural and related issues. 
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Introduction 

Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems are 

currently in the spotlight of active research in biology. (Makarova and Koonin., 2015) [52]. Y. 

Ishino discovered the first CRISPRs in 1987 while studying the gene encoding alkaline 

phosphatase's isozyme conversion in Escherichia coli (Ishino et al. 1987) [34]. CRISPR's 

purpose was unclear until the mid-2000s. Initially spotted in archaea in 1993, they later 

appeared in more bacterial and archaeal genomes. Similarities with sequences from viruses 

and plasmids suggested their role in immunity. Concurrently, genes called cas, associated 

with CRISPR, were identified in hyperthermophilic archaea, further linking CRISPR to 

defense mechanisms. (Haft et al., 2005; Makarova et al., 2006) [28, 53]. Analogous to the 

eukaryotic RNA interference (RNAi) system, comparative genomic analysis therefore 

showed that CRISPR and Cas proteins (the cas gene products) actually cooperate and form 

an acquired immunity system to protect prokaryotic cells against invasive viruses and 

plasmids (Brouns et al., 2008; Hale et al., 2009) [11, 30]. The first human use of CRISPR-Cas 

in 2016 marked a milestone following its initial demonstration in 2012 by George Church, 

Jennifer Doudna, Emmanuelle Charpentier, and Feng Zhang, with Doudna and Charpentier 

later awarded the 2020 Nobel Prize for their work. The pivotal 2007 experiment in 

Streptococcus thermophilus showcased CRISPR-Cas's role in acquired immunity by 

conferring resistance to phage attacks and limiting plasmid transformation. Yoshizumi Ishino 

and colleagues discovered CRISPRs in E. coli in 1987, while metagenomic analysis by 

Andersson and Banfield revealed dynamic changes in CRISPR loci sequences. Subsequent 

research demonstrated the heterologous protection provided by the CRISPR-Cas system of S. 

thermophilus against plasmid transformation and phage infection, highlighting Cas9's 

essential role in CRISPR-encoded interference. Genome editing using the CRISPR-Cas 

system of Streptococcus pyogenes further solidified its recognition as a prokaryotic acquired 

immunity system. This review focuses on type II-C CRISPR systems' biology, mechanism, 

and applications, primarily Cas9s (Chen et al., 2023) [15]. 
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Structural and biochemical studies 

Cas9 possesses a bilobed structure, with the guide RNA 

nestled between the nuclease and alpha-helical lobes. A 

solitary bridge helix connects these two lobes. The RuvC 

nuclease domain cleaves the non-target DNA strand, 

whereas the HNH nuclease domain cleaves the target DNA 

strand, both found in the multi-domain nuclease lobe. 

Sequentially dissimilar sites that interact in the tertiary 

structure to generate the RuvC cleavage domain encode the 

RuvC domain (Jinek et al., 2012; Doudna et al., 2014; Jinek 

et al., 2014). Target DNA must have a protospacer adjacent 

motif (PAM), made up of the three-nucleotide sequence 

NGG, which is an essential characteristic. The PAM-

interacting domain (PI domain), situated close to Cas9's C-

terminal end, is responsible for identifying this PAM. Cas9 

transitions between the apo, guide RNA-bound, and guide 

RNA: DNA-bound states through discrete conformational 

changes. Cas9 can determine the CRISPR locus's intrinsic 

stem-loop topology, which is responsible for forming the 

crRNA-tracrRNA ribonucleoprotein complex (Sternberg et 

al., 2014; Jiang et al., 2015; Jinek et al., 2014). Cas9 further 

recognizes and breaks down the target dsDNA when it 

forms a complex with trans-activating crRNA (tracrRNA) 

and CRISPR RNA (crRNA). A chimeric single-guide RNA 

that has been shown to have the same function as the 

original RNA complex takes the place of the crRNA-

tracrRNA complex.Cas9 anchors the sgRNA base in a T-

shaped architecture coupled with the target ssDNA (Jinek et 

al., 2012; Jiang et al., 2017; Nishimasu et al., 2014). The 

DNA-bound Cas9 enzyme's crystal structure reveals the 

position of the HNH domain in addition to unique 

conformational changes in the alpha-helical lobe about the 

nuclease lobe. The protein consists of a recognition lobe 

(REC) and a nuclease lobe (Jiang et al., 2017; Nishimasu et 

al., 2014; Anders et al., 2014) 

 

Mechanisms of crispr/cas-9 genome editing 

CRISPR/Cas-9 genome editing involves three main steps: 

recognition, cleavage, and repair. (Jinek et al., 2012; 

Doudna et al., 2014; Jinek et al., 2014) [37, 23, 39]. The 

engineered sgRNA guides Cas-9 to the target gene, 

triggering a double-strand break (DSB) three base pairs 

upstream of the PAM sequence. Cas-9 then initiates local 

DNA melting, forming an RNA-DNA hybrid, followed by 

cleavage of the DNA strands. Repair occurs through non-

homologous end joining (NHEJ) or homology-directed 

repair (HDR), with NHEJ being error-prone and HDR 

requiring a homologous DNA template for precise gene 

editing (Sternberg et al., 2014; Jiang et al., 2015; Jinek et 

al., 2014) [39]. 

 

Delivery of crispr-cas systems 

Various methods exist for introducing CRISPR-Cas systems 

into cells, primarily differing in the delivery of the gRNA 

and Cas9 protein. The gRNA can be supplied as RNA or 

DNA cloned into a plasmid, while the Cas9 protein can be 

delivered as a protein, transcribed mRNA, or plasmid DNA 

(Yin et al., 2019; Staahl et al., 2017; Zuris et al., 2015) [97, 75, 

102]. Delivery of the Cas9 protein as a ribo-protein complex 

offers advantages due to its transient presence and minimal 

off-target effects (Zuris et al., 2015; Ramakrishna et al., 

2014; Staahl et al., 2017) [102, 68, 75]. Physical techniques like 

electroporation, microinjection, and mechanical cell 

deformation, as well as carriers such as viral vectors (e.g., 

lentiviruses, adenoviruses, adeno-associated viruses) and 

non-viral methods (e.g., lipid nanoparticles, polymer 

nanoparticles, DNA nanostructures), can be used to transfer 

gRNA and Cas9 into cells (Doudna & Charpentier, 2014; 

Ramakrishna et al., 2014; Wang et al., 2019) [23, 68, 85]. Both 

viral and non-viral carriers protect gRNA and Cas proteins, 

enhancing delivery reliability and efficacy (Wang et al., 

2016) [87]. 

 

Application of CRISPR-Cas9 

Role in Gene Therapy 

Gene therapy, a leading advancement in medical 

biotechnology, involves modifying defective genes and 

replacing them with healthy DNA. CRISPR/Cas-9, 

alongside other techniques, has revolutionized gene therapy, 

with 22 treatments authorized between 1998 and 2019. 

Notably, CRISPR/Cas-9 holds promise for treating a range 

of genetic disorders, including sickle cell disease, cystic 

fibrosis, and Duchenne muscular dystrophy. In sickle cell 

disease, CRISPR/Cas-9 boosts fetal hemoglobin production 

by inhibiting the BCL11A gene (Brendel et al., 2016; 

Frangoul et al., 2021; Traxler et al., 2016; Canver et al., 

2015) [9, 24, 81, 14]. Similarly, it shows potential for correcting 

the CFTR gene mutation in cystic fibrosis (Schwank et al., 

2013; McCarron et al., 2020; Alton et al., 2015; Davies et 

al., 2018) [73, 56, 3, 20] and restoring dystrophin expression in 

Duchenne muscular dystrophy (Ousterout et al., 2015; 

Nelson et al., 2016; Tabebordbar et al., 2016; Min et al., 

2019) [65, 62, 77, 58]. CRISPR-based therapies have also entered 

human trials for lung cancer treatment, demonstrating 

promising results in modifying T-cells to target cancer cells 

effectively (Nelson et al., 2016; Tabebordbar et al., 2016; 

Young et al., 2016) [62, 77, 99]. 

 

Pipeline of CRISPR-Cas-assisted drug discovery 

CRISPR-Cas tools have revolutionized genetic manipulation 

across various organisms, from human ESCs to the malaria 

parasite, previously deemed nearly impossible. These 

advancements accelerate functional genomics, aiding in the 

discovery and validation of therapeutic targets, particularly 

in mammalian models and human cells (Akcakaya et al., 

2018; Joung et al., 2017) [1, 40]. They offer potential in 

improving animal models, enhancing safety testing, and 

refining patient treatment plans. Moreover, CRISPR-Cas 

editing enables the development of personalized cellular 

therapies, such as cancer-targeting T cells and 

reprogrammed induced pluripotent stem cells (iPSCs), for 

both genetic and non-genetic disorders (Cai et al., 2020; 

Kosicki et al., 2018; Gaudelli et al., 2017) [13, 45, 25]. In drug 

development, CRISPR-Cas systems streamline discovery, 

validation, and safety testing processes without significant 

delivery or administrative hurdles. This paves the way for 

novel therapeutic approaches and paradigms, making 

CRISPR-Cas indispensable in advancing medicine (Tycko 

et al., 2016; Liang et al., 2015; Doudna & Charpentier, 

2014) [82, 50, 23]. 

 

CRISPR-based assays for rapid detection of SARS-CoV-

2 

The COVID-19 pandemic escalated the urgency for 

widespread testing to detect and mitigate transmission. 

While qRT-PCR tests are the gold standard, they have 

limitations. Nucleic acid-based tests offer higher sensitivity, 

and efforts to enhance efficiency include integrating LAMP-
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based isothermal detection. Combining CRISPR-based 

techniques with isothermal technologies, as proposed by 

Broughton et al. (2020) [10], Joung et al. (2020) [41], Lalli et 

al. (2020) [46], promises rapid and sensitive detection of 

SARS-CoV-2 nucleic acids. 

 

Potential of CRISPR/Cas9 Gene Editing as a Treatment 

Strategy for Neurological disorders 

The distinguishing feature of neurodegenerative illnesses, 

which include Huntington's disease (HD), Parkinson's 

disease (PD), Alzheimer's disease (AD), amyotrophic lateral 

sclerosis (ALS), and frontotemporal dementia (FTD), is age-

dependent and selective neurodegeneration. These 

neurodegenerative diseases are more common as human life 

expectancy increases; the pathophysiology of most of these 

illnesses is still unknown, and there are currently no reliable 

treatments for these significant brain malfunctions (Ascherio 

& Schwarzschild, 2016; Brown & Al-Chalabi, 2017; Bang 

et al., 2015) [5, 12, 6]. Despite decades of understanding 

Alzheimer's disease (AD) at the molecular level, finding 

effective treatments has been challenging. Clinical trials 

targeting beta-amyloid have often fallen short, prompting a 

need to explore alternative therapies (Cummings et al., 

2021; Selkoe & Hardy, 2016; Herrup, 2015; Schneider et 

al., 2014) [17, 34, 31, 72]. Cas9-mediated knock-in mutations can 

aid in creating animal models for diseases caused by mutant 

protein toxicity, such as Huntington's disease. (Dabrowska 

et al., 2018; Monteys et al., 2017; Xu et al., 2017) [18, 59, 94]. 

 

CRISPR/Cas9 in cancer immunotherapy 

Current treatment medications often have high toxicity and 

low success rates, despite efforts in immunotherapy and 

chemotherapy to control cancer cell growth. Additionally, 

evolving mutations in proto-oncogenes and tumor-

suppressive genes limit the effectiveness of multi-targeted 

therapies to a few carcinogenesis pathways. (Barata et al., 

2021; Vasan et al., 2019; Mehta et al., 2020) [7, 84, 57]. 

CRISPR/Cas9 corrects causal mutations with minimal 

toxicity and enhances immunotherapy. However, key 

drawbacks include ethical concerns, generic limitations 

upstream of the Protospacer Adjacent Motifs (PAM) leading 

to off-target alterations, and a lack of consensus on risk 

assessment. (Pickar-Oliver & Verma et al., 2020) [67]. 

Animal models are crucial in refining CRISPR/Cas9 

experiments for improved genome editing specificity and 

enhanced anti-tumor responses. Clinical trials utilize the 

CRISPR/Cas9 system in immune cells for precise genome 

modifications. Recent advancements in error-free in vitro 

technologies aim to overcome limitations of this gene-

editing system. The article focuses on using CRISPR Cas9 

technology to treat treatment-resistant cancers. (Manguso et 

al., 2017; Marceau et al., 2016; Morselli et al., 2015) [54, 55, 

60]. Additionally, the use of CRISPR/Cas9 is aided as an 

emerging supplementation of immunotherapy, currently 

used in experimental oncology. 

 

CRISPR and HIV: New technique in human blood 

unveils potential paths toward cure 

CRISPR/Cas-9 gene-editing technology shows promise in 

treating microbially-induced infectious diseases, particularly 

HIV/AIDS. Temple University researchers demonstrated in 

animal models that deleting the HIV-1 genome using 

CRISPR/Cas-9 halted replication and removed the virus 

from infected cells (Yin et al., 2017; Wang et al., 2016; 

Kaminski et al., 2016; Dash et al., 2019) [96, 87, 42]. 

CRISPR/Cas-9 can also modify genes encoding the 

chemokine coreceptor type-5 (CCR5) in host cells, blocking 

HIV entry (Xu et al., 2017; Wang & Cannon, 2016; Liang et 

al., 2016; DiGiusto et al., 2016) [94, 85, 49, 21]. T cells from 

human blood were genetically modified using CRISPR-

Cas9, deleting multiple genes. When exposed to HIV, cells 

lacking essential viral replication genes showed reduced 

infection, while those lacking antiviral components showed 

increased infection (Wang et al., 2015; Zhang et al., 2021; 

D’Orso, 2017) [91, 101]. 

 

CRISPR-Cas system: A potential alternative tool to cope 

antibiotic resistance 

Antimicrobial resistance (AMR) poses a global health 

threat, fueled by the transfer of AMR genes among bacterial 

pathogens via horizontal gene transfer (HGT). To combat 

this, new approaches are urgently needed (Tacconelli et al., 

2018; Homes et al., 2016;). CRISPR/Cas systems, originally 

a prokaryotic immune mechanism, have emerged as 

powerful tools for combating AMR by targeting and 

cleaving DNA sequences encoding antibiotic resistance 

genes (Bikard et al., 2014; Citorik et al., 2014) [98, 8]. Given 

the slow pace of antibiotic development compared to 

bacterial evolution, alternative strategies such as 

bacteriophage therapies, antibacterial peptides, bacteriocins, 

and anti-virulence chemicals are crucial in tackling 

antibiotic-resistant infections (Imai et al., 2019; Tacconelli 

et al., 2018) [33, 79-80]. The CRISPR-Cas system has been 

leveraged for molecular recording and selectively targeting 

antibiotic resistance genes, offering promise in combating 

AMR (Yosef et al., 2015; Bikard et al., 2014) [98, 8]. 

 

CRISPR/Cas9 technology on cardiac research: From 

disease modelling to therapeutic approaches 

Genome-editing technology, particularly the CRISPR/Cas9 

system, has been widely used to correct DNA mutations, 

ranging from single base pairs to large deletions, in both in 

vitro and In vivo models, enhancing our understanding of 

cardiovascular disorders like lipid metabolism and 

electrophysiology (Savarese & Lund, 2017; Wu, 2017; 

Kessler et al., 2015) [71, 93, 43]. CRISPR/Cas9 facilitates gene 

knockout or knockin in human cells, particularly in induced 

pluripotent stem cells (iPSCs), offering valuable insights 

into disease mechanisms (Savarese & Lund, 2017; Wu, 

2017; Musunuru, 2013; Kessler et al., 2015) [71, 93, 43]. 

Despite its potential, challenges related to biology, 

technology, and ethics hinder its therapeutic application in 

cardiovascular diseases (Savarese & Lund, 2017; Wu, 2017; 

Kessler et al., 2015) [71, 93, 43]. Remarkably, CRISPR/Cas9 

has demonstrated efficacy in correcting genetic defects in 

postnatal/adult mice, exemplified by its ability to edit the 

PCSK9 gene, resulting in reduced blood cholesterol levels 

and lowered risk of coronary heart disease (CHD) (Wang et 

al., 2017; Ran et al., 2015) [90, 91]. 

 

CRISPR in livestock and poultry: From editing to 

printing 

Since the advent of the CRISPR revolution, precise genome 

editing of large animals has been achievable for application 

in biomedicine and cattle. The process is not necessarily a 

simple, quick, or safe path from editing to printing, or from 

genetic engineering to producing the required animals. 

Selecting the optimum method for genome editing, embryo 
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generation, zygote microinjection or electroporation, 

cryopreservation, and embryo transfer is necessary when 

using CRISPR in large mammals. These procedures can be 

time-consuming and expensive (Hai et al., 2014; Whitworth 

et al., 2014) [29, 92]. The primary technological advancements 

and frequently asked questions to enhance this revolutionary 

biotechnology in big animals. In light of the rising 

worldwide demand for food, CRISPR improves livestock 

production in several ways, including efficiency gains, a 

decrease in the environmental effect of farming, improved 

pest management, and improved animal welfare and health. 

It is no longer a technical challenge. For the first time in the 

CRISPR era, debates and agreements, chances and dangers, 

advantages and disadvantages, ethics and science should all 

be reexamined (Lassner & Peterson, 2015; Larson et al., 

2013) [48, 47]. Over time, CRISPR technology has evolved 

and improved, enabling it to create transgenic bird lines 

primarily for food purposes, especially for producing meat 

or eggs. The application of CRISPR technology may result 

in the sustainable and effective development of poultry 

products, so assisting in addressing issues related to global 

food security (Oishi et al., 2016; Van et al., 2020) [64, 83]. 

Growth, feed conversion, digestibility, increased egg output, 

and general improved performance of chickens raised for 

meat and eggs could all be significantly impacted by 

CRISPR technology. Technological developments in 

CRISPR may also improve disease resistance, vaccination 

delivery, and immune response. This will lead to 

improvements in the health of the poultry, the safety of 

immunizations derived from chicken eggs, and the 

production and safety of food (Lillico et al., 2013; Guo et 

al,. 2021) [51, 26]. Gene inactivation by indels introduction is 

known as knockout (KO). Efficiency of the CRISPR/Cas9 

tool ranges from 10% to over 90% in a variety of animals 

and cell types, including human, sheep, goat, cattle, pig, and 

mouse. Prior to the commercial release of CRISPR/Cas9 

ribonucleoprotein (RNP), KO efficiency was dependent on 

plasmid transfection. However, RNP delivery offers a 

greater KO efficiency and circumvents the drawbacks of 

using DNA plasmid delivery (Zhang et al., 2021; Wang et 

al., 2021) [101, 88]. After CRISPR/Cas9 RNP delivery, the 

RNP activates quickly to perform DSB, and indels are 

visible very quickly. Since RNP is removed from the cells in 

less than a day, there is a lower chance of off-target 

mutations. Plasmid delivery, on the other hand, carries the 

danger of inadvertent off-target mutation and may even 

contribute to a vector's integration into the host genome 

(Kim et al., 2014; Richardson et al., 2016) [44, 70]. 

 

Anti-crispr proteins 

Anti-CRISPR proteins, found in phages, hinder the normal 

function of the bacterial immune system CRISPR-Cas, 

effectively reversing its unintended effects. They act as 

blockers of Cas proteins, allowing phages to evade 

CRISPR-mediated defense mechanisms. Before the 

discovery of anti-CRISPR proteins, phages relied on 

acquiring mutations to reduce their binding affinity to 

CRISPR, but bacteria could counter this through "priming 

adaptation." Anti-CRISPR proteins are now recognized as 

the most effective strategy for ensuring phage survival 

during bacterial infections (Pawluk et al., 2018; Altae-Tran 

et al., 2023) [66, 2]. 

 

 

Ethical issues 

CRISPR-Cas9 technology offers affordable, precise genome 

editing with applications spanning human health, 

agriculture, and environmental conservation. However, 

ethical concerns, especially regarding germline editing in 

humans and environmental impacts, must be addressed 

through global legislation. While regulations are necessary, 

they shouldn't hinder scientific progress. This article 

explores CRISPR-Cas9's uses and ethical dilemmas across 

various domains, emphasizing the need for comprehensive 

ethical deliberation. 

 

Conclusion 

CRISPR is becoming an indispensable tool in biological 

research. Once known as the CRISPR is rapidly developing 

into a vital tool for biological study. The programmable 

ability of the Cas9 enzyme, once recognized as the bacterial 

immune system against invasive viruses, is transforming an 

array of industries, including biotechnology, medical 

research, and the livestock industry. These days, CRISPR-

Cas9 is used for more than only editing genes. Catalytically 

hindered inactive Cas9 has applications in chromatin 

engineering, imaging, gene regulation, and epigenetic 

editing. By learning about and comprehending these 

difficulties, we will be better equipped to assess the extent 

of their constraints and develop strategies for overcoming 

them. Undoubtedly, CRISPR-based technologies will 

continue to revolutionize biotechnological, clinical, and 

basic research. There are some challenges in store, though. 

The possible immunogenicity of CRISPR-Cas9 proteins is 

one such barrier. Therefore, further study must be done to 

deal with the safety and specificity of such technologies in 

tandem with the existing improvements. In addition, enough 

thought must be given to the ethical and social ramifications 

of these technologies for them to be useful to all societal 

strata and to benefit all of animal and humankind. 
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